Classroom Demonstration Guidelines
 (Basic Coordinates \& Seasons)

The following sequence of directions are steps an instructor might choose to follow in demonstrating the Seasons \& Ecliptic Simulator of the Basic Coordinates \& Seasons Module in a classroom situation. We provide these suggestions with appropriate questions (shown in bold italics) to pose to the class as an aid in promoting interactivity. We encourage instructors to adapt these suggestions to their particular educational goals and the needs of their class.

Animation Demonstration Directions	Interactive Questions		
Begin using the applet in its default configuration. The left panel will be in orbit view. Drag the perspective of the Earth's orbit so that you are looking down on the plane of the solar system.	What is the shape of the Earth's orbit around the sun? (the orbit is programmed as circular in this simulator, but it is really elliptical, e = $0.017)$ Can varying distance from the sun be responsible for the Earth's seasons? (No)		
Use the yearly slider to change the date to			
June 21 and drag the earth to the 9 o'clock			
position (far left). Now drag the perspective			
of the Earth's orbit so that we are looking			
along the plane. (We want an orientation			
where the summer solstice is on the far left so			
the winter solstice will be on the far right.)		\quad	What is this day of the year called? Summer
:---			
solstice)			
What season is it in the northern			
hemisphere? (summer)			
What season is it in the southern			
hemisphere? (winter)			
If varying distance were responsible for			
seasons, could you get different seasons in			
the two hemispheres? (No)	sun to illustrate this and point out the subsolar disk. Then change the upper right panel to view from side and drag the observer to the Tropic of Cancer.		

Make sure that the lower right panel is set to sunlight angle and point out that the sun's altitude is 90° (at the zenith).

Click start animation and run the animation to December 21.

What is the shape of the Earth's orbit around the sun? (the orbit is programmed as circular in this simulator, but it is really elliptical, $\mathrm{e}=$ 0.017)

Can varying distance from the sun be
responsible for the Earth's seasons? (No)
What is this day of the year called? Summer solstice)
What season is it in the northern
hemisphere? (summer)
What season is it in the southern
hemisphere? (winter)
If varying distance were responsible for seasons, could you get different seasons in the two hemispheres? (No)

Where on the Earth are the direct rays of the sun hitting? (Tropic of Cancer)

Where does this observer see the sun at noon? (directly overhead)

Where is it summer now on the Earth? (in the southern hemisphere)
Where are the direct rays of the sun hitting on the winter solstice? (on the Tropic of Capricorn).
\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { Drag the observer in the upper right panel up } \\
\text { to the Arctic Circle. Point out the sun's } \\
\text { altitude in the lower rightt is } 0^{\circ}-- \text { on the } \\
\text { horizon. }\end{array} & \begin{array}{l}\text { What is the significance of the tropics? (in } \\
\text { between the Tropics the sun can be at your } \\
\text { zenith) }\end{array} \\
\begin{array}{l}\text { Relative to where the direct rays are hitting } \\
\text { the Earth, where are the least direct rays } \\
\text { hitting? (90 away) } \\
\text { If one experiences direct rays when the sun is } \\
\text { at their zenith, where is the sun located when } \\
\text { one experiences the least direct rays?(on the } \\
\text { horizon) } \\
\text { Where on the Earth would the least direct }\end{array}
$$

rays be hitting on the Winter Solstice? (the

Arctic Circle)\end{array}\right\}\)| What does the sun look like to this observer? |
| :--- |
| altitude like $80^{\circ} \mathrm{N}$. |

	to students that this important factor cannot be seen in this simulator -- but is covered extensively in our Motion of the Sun simulator.		
Drag the Earth back and forth between the summer solstice and winter solstice positions in the left panel and point out to students how the sunlight intensity varies between the northern and southern hemisphere.	So what is the underlying cause of this variation in the intensity of sunlight? (The 23.5 tilt of the Earth's axis of rotation - the obliquity).		
Change to the celestial sphere view in the left			
panel. The viewer's perspective will now be			
seeing the celestial equator edge on and the			
date should be Dec. 21.		\quad	On the winter solstice does the observer see
:---			
the sun north or south of the celestial			
equator?			
(south)			
What about on the summer solstice?			
(north of the celestial equator)			
Why does the sun have this strange			
(apparent) path on the celestial sphere?			
(Because of the 23.5 tilt of the Earth's axis of			
rotation).			
If the tilt of the earth were larger, would the			
seasons change in any way?			
(Yes, they would be more intense).			

